Vibration Control of Flexible Mode for a Beam-Type Substrate Transport Robot
نویسندگان
چکیده
Beam‐type substrate transport robots are widely used to handle substrates, especially in the solar cell manufacturing process. To reduce the takt time and increase productivity, accurate position control becomes increasingly important as the size of the substrate increases. However, the vibration caused by the flexible forks in beam‐type robots interferes with accurate positioning, which results in long takt times in the manufacturing process. To minimize the vibration and transport substrates on the fork as fast as possible, the trajectories should be prevented from exciting the flexible modes of the forks. For this purpose, a fifth‐order polynomial trajectory generator and input shaping were incorporated into the controller of the beam‐type robot in this study. The flexible modes of the forks were identified by measuring the frequency response function (FRF), and the input shaping was designed so as not to excite the flexible modes. The controller was implemented by using MATLAB/xPC Target. In this paper, the design procedure of input shaping and its effectiveness for vibration attenuation in both “no load” and “load” cases is presented.
منابع مشابه
Robust Adaptive Vibration Control with Application to a Robot Beam
This paper presents the adaptive control scheme with sliding mode compensator for vibration control problem in the presence of disturbance. The dynamic model of the flexible cantilever beam using finite element modeling is derived. The adaptive control with sliding mode compensator using output feedback for output tracking is developed to reject the external disturbance, and to improve the trac...
متن کاملLQG vibration control of sandwich beams with transversely flexible core equipped with piezoelectric patches
The purpose of this paper is control of simply supported flexible core sandwich beam's linear vibration equipped with piezoelectric patches under different loads. The effects of external forces imposed on sandwich beam can be reached to a minimum value by designing an appropriate controller and control the beam's vibration. Three-layer sandwich beam theory is used for analytical modeling of san...
متن کاملA magnetorheological fluid damper for robust vibration control of flexible rotor-bearing systems: A comparison between sliding mode and fuzzy approaches
Squeeze Film Dampers (SFD) are commonly used for passive vibration control of rotor-bearing systems. The Magnetorheological (MR) and Electrorheological (ER) fluids in SFDs give a varying damping characteristic to the bearing that can provide active control schemes for the rotor-bearing system. A common way to model an MR bearing is implementing the Bingham plastic model. Adding this model to th...
متن کاملAdaptive Inverse Control of Flexible Link Robot Using ANFIS Based on Type-2 Fuzzy
This paper presents a novel adaptive neuro-fuzzy inference system based on interval Gaussian type-2 fuzzy sets in the antecedent part and Gaussian type-1 fuzzy sets as coefficients of linear combination of input variables in the consequent part. The capability of the proposed ANFIS2 for function approximation and dynamical system identification is remarkable. The structure of ANFIS2 is very sim...
متن کاملA New Type-2 Fuzzy Systems for Flexible-Joint Robot Arm Control
In this paper an adaptive neuro fuzzy inference system based on interval Gaussian type-2 fuzzy sets in the antecedent part and Gaussian type-1 fuzzy sets as coefficients of linear combination of input variables in the consequent part is presented. The capability of the proposed method (we named ANFIS2) to function approximation and dynamical system identification is shown. The ANFIS2 structure ...
متن کامل